COMPETITIVE ANALYSIS OF MECHANICAL PROPERTIES OF THERMALLY MODIFIED WOOD PRODUCED IN SUNFLOWER OIL

Panayot Panayotov, Zhivko Georgiev, Vasil Merdzhanov
University of Forestry, Sofia, Bulgaria

ABSTRACT
Thermally modification processes change mechanical properties of wood. These changes depend on the temperature treatment. In this article are reported mechanical properties changes in spruce, beech and poplar wood, modified in temperature 200 °C sunflower oil. It is determined: density, bending strength, compressive strength on fiber direction, sharing strength on fiber direction, splitting strength on received wood according to BDS 16987:89. About comparison are studied mechanical properties of untreated samples. It is proven that the modified wood in sunflower oil has lower density and lower bending strength in parallel comparing with untreated wood.

Key words: thermally modified wood, mechanical properties, beech-, spruce-, poplar- wood.

INTRODUCTION
The timber is widely used as building material and structural building elements. Unprotected wood which is exposed in outdoor conditions provokes a variety of degradation reactions as a result of different atmospheric factors: humidity, heat, sunlight and radiation, UV rays, fungi (Evans, P. D. et al.:1992; Reinprecht, L.: 1998). Moisture content promotes the fungal attack and degradation of wooden cells (Langendorf, G.: 1988; Evans, P. D. et al.:1992; Reinprecht, L.:1998; Rossnev, B. et al.:2007). In the past, timber preservation was carried out by chemical treatments compounds, some of them including components that are toxic and poisonous for both the environment and human health (Langendorf, G. (1988); Reinprecht, L.: 1998). The heat treatment of the wood in high temperatures ranging from 180 to 220 °C is one of the wood modification methods which by mild pyrolysis is used as an alternative to chemically impregnated timber (Viitaniemi et al.:1996; Bazyar, B.;2012; Shi, J. L. at. al.;2007). Some researches had developed heat-treatment methods. They are suitable for industrial applications to improve dimensional stability, durability and other properties of timber (Dirol, D. and R. Guyonnet: 1993; Viitaniemi et al.:1996; Syrjanen, T. and K. Oy: 2001; Weiland et al.:2003). The properties of thermally modified timber of many wood species are widely studied in different countries. The results of these researches are presented in many papers, whereas the Bulgarian production it is still poorly known (Panayotov, P. A. and J. Georgiev: 2013). In this research, timber of three species (spruce, beech and poplar) was modified in sunflower oil in temperature 200 °C.

MATERIALS AND METHODS
Thermal modification is carried out on spruce (Picea abies), poplar (Populus italiana I-214) and beech (Fagus silvatica) wood samples, dried in an electrical chamber at 103±2 °C till constant weight. The samples dimensions are: 25 x 25x 480 mm; 40 x 40 x 480 mm; 55 x 55 x 480 mm, last one in longitudinal directions. Wood specimens were thermally treated in sunflower oil. The heat treatment plans consist of two successive thermal stability areas. First one is at 135 °C in order to reach thermal homogenization of
the wooden elements. The second one was performed at 200 °C. This research is comparable for six different series of the modified and untreated spruce; beech and poplar wood. The first index shows wood species in this order: spruce-PcAb; poplar-PoIt; beech-FaSy. Untreated wood are obtained in drying kiln with temperature 103 °C till constant weight. They are marked with second index N. The wood for modification is the same as untreated before treatment. The processes are organized like heat treatment in determinate temperature regime (figure 1) in sunflower oil environment. The series which are obtained in sunflower oil are marked with second index “T”.

![Cycle of thermal treatment](image_url)

Figure 1: Plan of heat treatment in sunflower oil.

The plan is showing the temperature change over time of the treatment in a medium of sunflower oil to all types of wood pieces. Maximum temperature reached 200°C is maintained for two hours. It is determined: density, ultimate strength in compression parallel to the grain; static bending strength, shearing strength parallel to the grain, splitting strength on received wood according to BDS 16987:89. As comparison are studied mechanical properties of untreated samples. The samples for all research were cut from heat-treated and untreated wood elements (boards). The samples used for determination static hardness and density are 16 from series with measurement (dimensions) 50x50x50 mm, respectively tangential, radial and longitudinal. The 16 samples with measurements 10x10x20 mm (respectively tangential, radial and longitudinal) for each series, according to BDS 16987:89. Strength parallel to the grains is determinate on 16 samples with measurements 10x10x20 mm (respectively tangential, radial and longitudinal) for each series, according to BDS 16987:89. The static bending strength is determine on 16 samples with measurements 10x10x150 mm (respectively tangential, radial and longitudinal) for each series, according to BDS 16987:89. The sharing strength parallel to the grains is determined on 16 samples with measurements 20x30x50 mm (respectively tangential, radial and longitudinal) for each series, according to BDS 16987:89. The splitting strength is determine on 16 samples with measurements 20x20x50 mm (respectively tangential, radial and longitudinal) for each series, according to BDS 16987:89. All of tests are conducted
with universal machine and equipment of Brinel.

All the received results are standard deviation proved. Statistical calculations were based on 95 % confidence level. The control of differences reliability is calculated coefficients of Student by formula (1):

$$t = \frac{\text{Aver}_1 - \text{Aver}_2}{\sqrt{\text{StEr}_1^2 + \text{StEr}_2^2}} \geq 3$$ (1)

where: t is coefficient of Student; Aver_i is average values; StEr_i is standard error.

The differences are reliable, when coefficient has value more of 3.

RESULTS AND ANALYSIS

Mechanical properties average values of thermally modified (heat treated) beech, popular and spruce wood, compared to the properties of untreated wood of the same species are presented in table 1, 2, 3, 4 and 5.

In table 1 are presented average value of the density, determined on specimens of static Brinel hardness.

Table 1: Density of samples (n=16) for determined static hardness by Brinel

<table>
<thead>
<tr>
<th>Index of wood species</th>
<th>Variation statistical parameters</th>
<th>Moisture content [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aver., [kg/m³]</td>
<td>Stand.Dev. [kg/m³]</td>
</tr>
<tr>
<td>FaSyN</td>
<td>735.06</td>
<td>8.65</td>
</tr>
<tr>
<td>FaSyT</td>
<td>861.56</td>
<td>9.40</td>
</tr>
<tr>
<td>PoItN</td>
<td>375.56</td>
<td>9.39</td>
</tr>
<tr>
<td>PoItT</td>
<td>736.38</td>
<td>8.36</td>
</tr>
<tr>
<td>PcAbN</td>
<td>410.93</td>
<td>8.38</td>
</tr>
<tr>
<td>PcAbT</td>
<td>441.94</td>
<td>8.38</td>
</tr>
</tbody>
</table>

Legend: FaSy – fagus; PoIt – poplar I – 214; PcAb – spruce; N – untreated wood; T – thermally treated (modified) wood; Stand.Dev. – standard deviations; St.Er. – standard error; Var – variation coefficient.

The samples are dried in temperature 170±10 °C in period of 21 hours (3x7 = 21 hours) to take out remaining oil quantity after heat treatment. After drying the samples are conditioned in temperature 20 °C and relative air humidity 55–65 % for a month before measure and tests. It is shown that density increase after treatment. The highest value of density has modified beech: 862 kg/m³. The standard deviation differences are reliable, because the coefficients of Student are higher than 3. The difference between density of untreated and modified beech from 126.5 kg/m³ is reliable, because coefficient of Student has value of 40.28. The spruce wood samples have lowest density increase (PcAbT). It’s density difference is 31.01 kg/m³, which is reliable with Student’s coefficient of 9.54. The density difference between untreated and modified wood (360.82 kg/m³) is reliable with Student’s coefficient value of 114.9. Therefore oil is remaining in wood after treatment and conditioned. Depending on the case, it may be positive or negative result about exploitation. In these cases the remaining quantity must be taken of wood with final vacuum or other methods. In table 2 is presented the average value of the ultimate strength in compression parallel to the grain.

Table 2: Compressive strength parallel to the grain

<table>
<thead>
<tr>
<th>Index of wood species</th>
<th>Variation statistical parameters</th>
<th>Moisture content [%]</th>
<th>Density D_w [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aver., [N/mm²]</td>
<td>Stand. Dev. [N/mm²]</td>
<td>St.Er. [N/mm²]</td>
</tr>
<tr>
<td>FaSyN</td>
<td>46.71</td>
<td>1.69</td>
<td>0.42</td>
</tr>
<tr>
<td>FaSyT</td>
<td>44.89</td>
<td>4.41</td>
<td>1.10</td>
</tr>
<tr>
<td>PoItN</td>
<td>30.82</td>
<td>1.02</td>
<td>0.25</td>
</tr>
</tbody>
</table>
PANAYOT PANAYOTOV, ZHIVKO GEORGIEV, VASIL MERDZhanov

Index of wood species	Variation statistical parameters	Moisture content [%]	Density, D_w [kg/m3]
PoIT | Aver., [N/mm2] | Stand. Dev. [N/mm2] | St. Er. [N/mm2] | Var [%] | p [%] | 5.6 | 1013
PoAbN | 27.86 | 0.91 | 0.23 | 3.25 | 0.8 | 10.8 | 421
PoAbT | 25.20 | 2.08 | 0.52 | 8.27 | 2.1 | 4.8 | 369

Legend: FaSy – fagus; PoIt – poplar I-214; PoAb – spruce; N – untreated wood; T – thermally treated (modified) wood; Stand.Dev. – standard deviations; St. Er. – standard error; Var – variation coefficient.

Compressive strength parallel to the grains is showing as lower values result of thermally treatment processes (fig. 2), but the differences are not reliable. For example beech wood, before treatment has a value of 46.71 N/mm2 and value of 44.89 N/mm2 after treatment. The difference of 1.82 N/mm2 is not reliable, because Student coefficient is 1.54, lower of 3. Probably the decrease depends on oil penetration in cell’s lumens.

Figure 2: Compressive strength parallel to the grains.

In table 3 is presented the average values of the bending strength. The results show that thermally treated wood has lower values in bending strength. For example in beech the decrease of bending strength is 30 % in radial and 40 % in tangential direction. The results are reliable; because Student coefficient has value more of 3.

Table 3: Bending strength

Index of wood species	Variation statistical parameters	Moisture content [%]	Density, D_w [kg/m3]
FaSyNr | Aver., [N/mm2] | Stand. Dev. [N/mm2] | St. Er. [N/mm2] | Var [%] | p [%] | 10.6 | 786
FaSyNt | 101.77 | 6.21 | 1.55 | 6.1 | 1.5 | 10.6 | 786
FaSyTr | 76.51 | 4.59 | 0.87 | 6.0 | 1.1 | 4.3 | 1082
FaSyTt | 61.38 | 5.28 | 1.32 | 8.6 | 2.1 | 4.3 | 1082
PoItNr | 62.36 | 6.31 | 1.58 | 10.1 | 2.5 | 11.3 | 419
PoItNt | 58.60 | 7.26 | 1.82 | 12.4 | 3.1 | 11.3 | 419
PoItTr | 44.14 | 6.59 | 1.64 | 14.9 | 3.7 | 4.8 | 1013
PoItTt | 43.82 | 6.68 | 1.67 | 15.2 | 3.8 | 4.8 | 1013
PoAbNr | 66.38 | 8.24 | 2.06 | 12.4 | 3.1 | 10.7 | 369
PoAbNt | 55.71 | 6.51 | 1.63 | 11.7 | 2.9 | 10.7 | 369
PoAbTr | 38.61 | 7.42 | 1.85 | 19.2 | 4.8 | 5.5 | 421
PoAbTt | 34.43 | 5.36 | 1.34 | 15.5 | 3.9 | 5.5 | 421

Legend: FaSy – fagus; PoIt – poplar I-214; PoAb – spruce; N – untreated wood; T – thermally treated (modified) wood; Stand.Dev. – standard deviations; St. Er. – standard error; Var – variation coefficient; r – radial direction; t – tangential direction.
In table 4 is presented the average value of the shearing strength parallel to the grain. The results show that thermally treated wood has lower values of sharing strength. Sharing strength is decreasing in beech wood with 46.5 % in radial and 41.8 % in tangential direction after treatment. The changes in poplar wood are notable; sharing strength is reduced to 57.1 % in radial and 57.7 % in tangential direction. Spruce wood sharing strength reduces lowest. The all results are reliable; because Student coefficient has value more of 3.

Table 4: Shearing strength parallel to the grain

<table>
<thead>
<tr>
<th>Index of wood species</th>
<th>Aver., [N/mm²]</th>
<th>Stand.Dev [N/mm²]</th>
<th>Stand.Er [N/mm²]</th>
<th>Var [%]</th>
<th>p [%]</th>
<th>Moisture content [%]</th>
<th>Density, Dₘ [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FaSyNr</td>
<td>19.31</td>
<td>1.99</td>
<td>0.49</td>
<td>10.3</td>
<td>2.6</td>
<td>10.8</td>
<td>786</td>
</tr>
<tr>
<td>FaSyNt</td>
<td>20.53</td>
<td>2.37</td>
<td>0.59</td>
<td>21.5</td>
<td>2.9</td>
<td>10.8</td>
<td>786</td>
</tr>
<tr>
<td>FaSyTr</td>
<td>11.95</td>
<td>2.06</td>
<td>0.52</td>
<td>17.2</td>
<td>4.3</td>
<td>4.2</td>
<td>1082</td>
</tr>
<tr>
<td>PoltNr</td>
<td>9.21</td>
<td>1.45</td>
<td>0.36</td>
<td>15.7</td>
<td>3.9</td>
<td>11.5</td>
<td>419</td>
</tr>
<tr>
<td>PoltNt</td>
<td>11.48</td>
<td>1.86</td>
<td>0.46</td>
<td>16.2</td>
<td>4.0</td>
<td>11.5</td>
<td>419</td>
</tr>
<tr>
<td>PoltTr</td>
<td>3.95</td>
<td>0.85</td>
<td>0.21</td>
<td>21.5</td>
<td>5.3</td>
<td>5.4</td>
<td>1013</td>
</tr>
<tr>
<td>PoltTt</td>
<td>4.86</td>
<td>0.78</td>
<td>0.19</td>
<td>16.1</td>
<td>4.3</td>
<td>5.4</td>
<td>1013</td>
</tr>
<tr>
<td>PcAbNr</td>
<td>10.08</td>
<td>1.78</td>
<td>0.45</td>
<td>17.6</td>
<td>4.5</td>
<td>10.7</td>
<td>369</td>
</tr>
<tr>
<td>PcAbNt</td>
<td>12.30</td>
<td>2.14</td>
<td>0.53</td>
<td>17.4</td>
<td>4.3</td>
<td>10.7</td>
<td>369</td>
</tr>
<tr>
<td>PcAbTr</td>
<td>7.12</td>
<td>1.36</td>
<td>0.34</td>
<td>13.1</td>
<td>4.7</td>
<td>5.7</td>
<td>421</td>
</tr>
<tr>
<td>PcAbTt</td>
<td>8.31</td>
<td>1.45</td>
<td>0.36</td>
<td>17.4</td>
<td>4.3</td>
<td>5.7</td>
<td>421</td>
</tr>
</tbody>
</table>

Legend: FaSy – fagus; Polt – poplar 1-214; PcAb – spruce; N – untreated wood; T – thermally treated (modified) wood; Stand.Dev. – standard deviations; St.Er. – standard error; Var – variation coefficient; r – radial direction; t-tangential direction.

In Fig. 3 is presented wood test samples tested in shearing strength.

Figure 3: Wood test samples tested shearing strength test.

In table 5 is presented the average value of the Splitting strength parallel to the grain.

Table 5: Splitting strength parallel to the grain

<table>
<thead>
<tr>
<th>Index of wood species</th>
<th>Aver. [kN/m]</th>
<th>Stand.Dev [kN/m]</th>
<th>Stand.Er [kN/m]</th>
<th>Var [%]</th>
<th>p [%]</th>
<th>Moisture content [%]</th>
<th>Density, Dₘ [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FaSyNr</td>
<td>46.52</td>
<td>5.82</td>
<td>1.45</td>
<td>17.90</td>
<td>4.5</td>
<td>11.20</td>
<td>786</td>
</tr>
<tr>
<td>FaSyNt</td>
<td>50.89</td>
<td>7.23</td>
<td>1.81</td>
<td>14.20</td>
<td>3.5</td>
<td>11.20</td>
<td>786</td>
</tr>
<tr>
<td>FaSyTr</td>
<td>11.95</td>
<td>0.65</td>
<td>0.16</td>
<td>5.50</td>
<td>1.4</td>
<td>3.21</td>
<td>1082</td>
</tr>
<tr>
<td>FaSyTt</td>
<td>20.30</td>
<td>3.63</td>
<td>0.98</td>
<td>17.90</td>
<td>4.5</td>
<td>3.21</td>
<td>1082</td>
</tr>
<tr>
<td>PoltNr</td>
<td>246.63</td>
<td>21.48</td>
<td>5.37</td>
<td>8.70</td>
<td>2.2</td>
<td>11.30</td>
<td>419</td>
</tr>
</tbody>
</table>
The analysis of the results shows that splitting strength of thermally modified wood is lower than natural. This is valid for all wood species. The differences are reliable with Student coefficients higher than 3.

In fig. 5 is presented test samples tested in sharing strength.

CONCLUSION

The results of the initial tests show that the overall performance of the three species of trees grown in Bulgaria and treated by liquid heat treatment methods (in sunflower oil) is acceptable. Thermal modification changes the mechanical properties of wood. These changes depend on treating with temperature.

– Common to all tested mechanical properties of sunflower oil - treated wood shows essential reduction of strength parameters.
- Differences in tangential and radial direction of test samples are also significant, with a few exceptions.
- The results are expected due to the high temperature and oil in the treatment environment.
- There is a large amount of soaked oil and extracted substances from the timber.
- It might be concluded that the treated wood should not be used for structural elements under high load, only for decorative items.

REFERENCES

Acknowledgements:
The article contains a part of results, received from development of projects № 136, sponsored of program"Science Investigated" by NID – University of Forestry, Sofia, during the period 2012–2013 years.